(a) Find the range of values of x for which $|x-4| \ge 2$, where $x \in \mathbb{R}$.

(b) Solve the simultaneous equations:

$$x^{2} + xy + 2y^{2} = 4$$
$$2x + 3y = -1.$$

Question 5

(a) (i) The lengths of the sides of a right-angled triangle are given by the expressions x - 1, 4x, and 5x - 9, as shown in the diagram. Find the value of x.

(ii) Verify, with this value of x, that the lengths of the sides of the triangle above form a pythagorean triple.

- (b) A male bee comes from an unfertilised egg, i.e. he has a female parent but he does not have a male parent. A female bee comes from a fertilised egg, i.e. she has a female parent and a male parent.
 - (i) The following diagram shows the ancestors of a certain male bee. We identify his generation as G_1 and our diagram goes back to G_4 . Continue the diagram to G_5 .

G_1	G_2	G_3	G_4	G_5
			Female	
		Female		
Male —	→ Female		Male	
		✓ Male —	→ Female	

(ii) The number of ancestors of this bee in each generation can be calculated by the formula

$$G_{n+2} = G_{n+1} + G_n,$$

where $G_1 = 1$ and $G_2 = 1$, as in the diagram.

Use this formula to calculate the number of ancestors in G_6 and in G_7 .

(iii) The number of ancestors in each generation can also be calculated by using the formula

$$G_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n\sqrt{5}}.$$

Use this formula to verify the number of ancestors in G_3 .

Question 2 (25 marks)

Solve the equation $x^3 - 3x^2 - 9x + 11 = 0$.

Write any irrational solution in the form $a+b\sqrt{c}$, where $a,b,c\in\mathbb{Z}$.

(a) Solve the equation $x = \sqrt{x+6}$, $x \in \mathbb{R}$.

Question 4 (25 marks)

Solve the simultaneous equations:

$$2x + 8y - 3z = -1$$
$$2x - 3y + 2z = 2$$
$$2x + y + z = 5.$$

- The graphs of the functions $f: x \mapsto |x-3|$ and $g: x \mapsto 2$ are shown in the diagram. (b)
 - Find the co-ordinates of the points A, B, C and D.

$$C=($$
 , $)$ $D=($, $)$

(ii) Hence, or otherwise, solve the inequality |x-3| < 2.

(a) Find the set of all real values of x for which $2x^2 + x - 15 \ge 0$.

(b) Solve the simultaneous equations;

$$x+y+z=16$$

$$\frac{5}{2}x+y+10z=40$$

$$2x+\frac{1}{2}y+4z=21.$$

(a) Solve the simultaneous equations,

$$2x+8y-3z = -1$$

 $2x-3y+2z = 2$
 $2x+y+z = 5$.

Question 1 (25 marks)

(a) Solve the simultaneous equations:

$$a^2 - ab + b^2 = 3$$
$$a + 2b + 1 = 0$$

(b) Find the set of all real values of x for which $\frac{2x-5}{x-3} \le \frac{5}{2}$.

